Insertion of Internal Acetylenes into Orthopalladated α-Methylbenzylamine. Crystal Structure of $\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{Ph})=\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph})=\mathrm{C}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4} \mathbf{C H}(\mathrm{Me}) \mathrm{NH}_{2}\right\} \mathrm{Br}\right] \dagger$

José Vicente, ${ }^{*, a}$ Isabel Saura-Llamas ${ }^{a}$ and M. Carmen Ramírez de Arellano ${ }^{\text {b }}$
${ }^{a}$ Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Apdo 4021, E-30071-Murcia, Spain
${ }^{\text {b }}$ University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

The complex $\left[\mathrm{Pd}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\}\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right] \mathrm{ClO}_{4}$ reacted with diphenylacetylene to give $\left[\mathrm{Pd}_{2}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Ph}_{5}\right)_{2}\left(\mu-\eta^{2}-\mathrm{PhC} \equiv \mathrm{CPh}\right)\right]$. A pathway for this reaction is suggested. Species related with the postulated intermediates can be isolated starting from [\{Pd[$\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right](\mu-\mathrm{Br})\right\}_{2}$] which reacts with disubstituted alkynes ($\mathrm{RC} \equiv \mathrm{CR}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$ or Ph) to afford $\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}-\right.\right.$ (Me) $\left.\left.\mathrm{NH}_{2}\right\} \mathrm{Br}\right]\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me} \mathbf{1 a}\right.$ or Ph 1 b$)$ through a double insertion of the alkyne into the $\mathrm{Pd}-\mathrm{C}$ bond. Complex 1 a reacted with 1 equivalent of $\mathrm{MeO}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$ to give the tri-insertion reaction product 2. These are the first products of alkyne insertion into a cyclopalladated primary amine. Neutral ligands, such as pyridine (py) or CO, can break the $\mathrm{Pd}-\pi$-olefinic bond in 1a to give the corresponding adducts $\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\} \mathrm{Br}(\mathrm{L})\right] \quad\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me} ; \mathrm{L}=\mathrm{py} 3\right.$ or CO 4). Complexes 1a and 1b reacted with $\mathrm{AgClO}_{4}(1: 1)$ in acetone to afford AgBr and $\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\}(\right.$ solv $\left.)\right] \mathrm{ClO}_{4} \quad\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \quad\right.$ solv $=\mathrm{H}_{2} \mathrm{O} \quad 5 \mathrm{a} ; \quad \mathrm{R}=\mathrm{Ph}$, solv $=\mathrm{Me}_{2} \mathrm{CO} 5 \mathrm{~b}$). The reaction of complex 1 a with $\mathrm{AgClO}_{4}(1: 1)$ and excess of pyridine gave the cationic complex $\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\}(\mathrm{py})_{2}\right] \mathrm{ClO}_{4} 6\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$. The crystal structure of complex 1b has been determined by X-ray diffraction. The palladium atom is bonded to $\mathrm{Br}, \mathrm{N}, \mathrm{C}(1)$ and to the midpoint of the $\mathrm{C}(3)-\mathrm{C}(4)$ double bond in a distorted square-planar geometry.

The metal-carbon bond in orthopalladated tertiary amines undergoes insertion reactions with, for example, carbon monoxide, ${ }^{2}$ alkenes, ${ }^{3}$ acyl halides ${ }^{4}$ and alkynes, ${ }^{5-7}$ and, upon decomposition, can afford interesting organic compounds. ${ }^{5,8,9}$ These compounds have therefore attracted great interest in organic synthesis.

Recently we have described the orthopalladation of α methylbenzylamine. ${ }^{1}$ We were interested in the reaction of these cyclometallated primary amines with alkynes, first because such reactions have not been reported yet and, secondly, because a different behaviour from their analogous complexes containing tertiary amines is expected. Thus, more stable insertion products are predicted due to their greater basic character and therefore there exists the possibility of studying the reactivity of such mono- or di-inserted complexes with different ligands to afford new types of organopalladium complexes. This is the main objective of the present work. The only reported reactions of cyclopalladated primary amines are those of CO or isocyanides with cyclopalladated benzylamine affording, after insertion and depalladation, phthalimidine or isoindolinimines, respectively. However, these results were published some time ago as a preliminary communication. ${ }^{4}$

Results and Discussion

We have reported that $\left[\mathrm{PdCl}_{2}\left\{\mathrm{NH}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{Ph}\right\}_{2}\right]$ reacts with $\mathrm{AgClO}_{4}(1: 2)$ in acetone to give $\mathrm{AgCl},\left[\mathrm{PhCH}(\mathrm{Me}) \mathrm{NH}_{3}\right] \mathrm{ClO}_{4}$ and the palladium complex $\left[\operatorname{Pd}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\}\left(\mathrm{Me}_{2}-\right.\right.$ $\left.\mathrm{CO})_{2}\right]_{\mathrm{ClO}_{4}}$ (complex \mathbf{A} in Scheme 1). ${ }^{1}$ This solvento complex

[^0]

Scheme 1 (i) $+2 \mathrm{AgClO}_{4}+$ solv (acetone), $-\mathrm{AgCl}-[\mathrm{PhCH}(\mathrm{Me})-$ $\left.\mathrm{NH}_{3}\right] \mathrm{ClO}_{4} ;(i i)+\mathrm{PhC} \equiv \mathrm{CPh} ;(i i i)+\mathrm{Br}^{-},-\mathrm{ClO}_{4}$
reacts with $\mathrm{PhC} \equiv \mathrm{CPh}$ ($1: 5$, acetone, room temperature, overnight) to give a dark green crystalline product which, after a crystal structure determination, proved to be the palladium(I) complex $\left[\mathrm{Pd}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{5}\right)_{2}\left(\mu-\eta^{2}-\mathrm{PhC} \equiv \mathrm{CPh}\right)\right]$ (see B in Scheme 1) and a mixture of organic compounds which we could not separate. Complex \mathbf{B} has been reported as one of the products of the reaction between $\left[\left\{\mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{2}\right\}_{3}\right]$ and $\mathrm{PhC} \equiv \mathrm{CPh}$ and its crystal structure has been solved. ${ }^{10}$ The proposed mechanism requires nucleophilic attack of MeO^{-}, probably generated by the reaction of the solvent (MeOH) and acetate, on the π-co-ordinated acetylene molecule. Since these are not

Scheme 2 (i) $+\mathrm{RC} \equiv \mathrm{CR}$
the conditions of our reaction we can adapt the proposed mechanism to our case as shown in Scheme 2. The low donor ability of the potential ligands in solution $\left(\mathrm{Me}_{2} \mathrm{CO}, \mathrm{ClO}_{4}{ }^{-}\right.$, $\mathrm{PhC} \equiv \mathrm{CPh}$) to complete the four-co-ordination of $\mathrm{Pd}^{\mathrm{II}}$ could be responsible for the instability of intermediates A1-A3 and, therefore, for the formation of B. To get information on these intermediates we planned to study the insertion reactions of alkynes and the complex we reported as the result of the reaction of A and NaBr , i.e. $\left[\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right](\mu-\mathrm{Br})\right\}_{2}\right]$ (see C in Scheme 1).

The reaction of complex \mathbf{C} with $\mathrm{RC} \equiv \mathrm{CR}\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right.$ or Ph) gives the nine-membered cyclometallated complexes [Pd$\left.\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\} \mathrm{Br}\right] \quad\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right.$ 1a or Ph 1 b ; see Scheme 3) resulting from insertion of two alkyne molecules into the $\mathrm{Pd}-\mathrm{C}$ bond (type A2, see Scheme 2). Attempts to obtain the monoinsertion products (type A1, see Scheme 2) were unsuccessful. Thus, when the reaction between C and $\mathrm{MeO}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$ was carried out in a 1:2 molar ratio (one alkyne per Pd atom) a $1: 1$ mixture of \mathbf{C} and 1 a was obtained. When the reaction was carried out with $\mathrm{PhC} \equiv \mathrm{CPh}$ an analogous mixture was obtained even when an excess of diphenylacetylene was used ($1: 4$, that is, two alkynes per Pd atom). Only when 3 equivalents of $\mathrm{PhC} \equiv \mathrm{CPh}$ were used, complex 1b was obtained as a pure compound. Isolation of mono- ${ }^{5,6 a, h}$ and di-inserted ${ }^{5,6 c, e, f, h, 7,9}$ compounds of the types A1 and A2 in reactions of cyclopalladated complexes and alkynes is well documented. The synthesis of the di-inserted compound, without isolation or observation of the monoinserted intermediate, has been reported to occur mainly with electron-rich acetylenes like hex-3-yne or $\mathrm{PhC} \equiv \mathrm{CPh} .{ }^{5}$ Kinetic studies have shown that this is due to the fact that formation of the monoinserted compound is the rate-determining step. ${ }^{6 g}$

Complex 1a is very insoluble in all common organic solvents which prevented its characterization by NMR spectroscopy. Nevertheless, its IR spectrum shows three strong bands at 3290, 3203 and $3132 \mathrm{~cm}^{-1}$ corresponding to $\mathrm{v}(\mathrm{NH})$, and four very

Scheme 3 (i) $+2 \mathrm{RC} \equiv \mathrm{CR}$; (ii) $+\mathrm{RC} \equiv \mathrm{CR}$

Fig. 1 Structure of complex $\mathbf{1 b}$ in the crystal; H atoms are omitted for clarity
strong peaks at $1723,1708,1703$ and $1671 \mathrm{~cm}^{-1}$ corresponding to $v\left(\mathrm{CO}_{2}\right)$, which suggests that a di-insertion product was produced. On the other hand, the NMR spectra of its derivatives 2-6 showed four resonances in the range δ 3.14-3.90 corresponding to four different OMe groups.

Complex 1b has been characterized by X-ray diffraction (Fig. 1). Table 1 gives crystal data and structure refinements, Table 2 atomic coordinates, and Table 3 selected bond lengths and angles. The palladium atom is bonded to $\mathrm{Br}, \mathrm{N}, \mathrm{C}(1)$ and to the midpoint of the $\mathrm{C}(3)-\mathrm{C}(4)$ double bond in a distorted squareplanar geometry. The deviations from the mean plane are: Pd, 0.0052 ; $\mathrm{C}(1),-0.0042$; $\mathrm{Br}, 0.0011 ; \mathrm{N},-0.0037$; midpoint $\mathrm{C}(3)-\mathrm{C}(4), 0.0017 \AA$. The $\mathrm{Pd}-\mathrm{Br}[2.439(1) \AA], \mathrm{Pd}-\mathrm{N}[2.150(7) \AA]$ and $\mathrm{Pd}-\mathrm{C}(1)[2.009(7) \AA]$ distances and related angles are similar to those in five-membered cyclopalladated compounds. ${ }^{7}$ The $\mathrm{Pd}-\mathrm{C}(3)[2.228(6) \AA]$ and $\mathrm{Pd}-\mathrm{C}(4)$ [2.215(6) \AA] lengths are slightly different from one another, and the $C(3)-C(4)$ bond $[1.393(9) \AA]$ is slightly longer than the $\mathrm{C}(1)-\mathrm{C}(2)$ bond $[1.322(9)$ \AA] due to co-ordination to the palladium atom.

Since an excess of acetylene at room temperature does not give tri-inserted complexes from 1a and 1b we have tried this reaction using more severe reaction conditions. However, while 1 a reacted in refluxing CHCl_{3} with more $\mathrm{MeO}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$ to give a soluble compound 2, complex 1b does not react under the same conditions. The proton NMR spectrum of 2 revealed
the presence of six inequivalent carboxylate groups. We propose for it the same structure (see Scheme 3) as that of analogous compounds prepared by Pfeffer and co-workers, ${ }^{11}$ which is also the postulated structure for the intermediate $\mathbf{A 3}$ (see Scheme 2) in the process of formation of compound \mathbf{B} from \mathbf{A}.

All reactions of the reported di-inserted complexes lead to palladium and organic products. These reactions occur at rooms or higher temperatures or after addition of maleic anhydride. ${ }^{5}$ Complexes 1a and 1b are expected to be more stable than their homologues with tertiary amines. Thus, the reaction between $\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\} \mathrm{Br}\right]$ ($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$) and neutral compounds such as pyridine (py) or CO afforded complexes $\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}\right.\right.$ $\left.\left.(\mathrm{Me}) \mathrm{NH}_{2}\right\} \mathrm{Br}(\mathrm{L})\right]\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me} ; \mathrm{L}=\right.$ py $\mathbf{3}$ or CO 4 ; see Scheme 4), where the ligands broke the π-olefinic bond to give the corresponding adducts. Complex $4\left[v(C O) 2120 \mathrm{~s} \mathrm{~cm}^{-1}\right]$ is stable at room temperature when solid, although it slowly decomposes in solution. This stability is remarkable because organopalladium(II) complexes usually react with carbon monoxide to

Table 1 Crystal data and structure refinement details for compound 1b

Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{BrNPd}$
M	662.9
T / K	290
Crystal system	Monoclinic
Space group	$P 2_{1} / n$
a / \AA	$13.468(3)$
b / \AA	$15.528(3)$
c / \AA	$14.092(3)$
$\beta /{ }^{\circ}$	$92.80(2)$
U / \AA^{3}	$2943.3(11)$
Z	4
$D \mathrm{c} / \mathrm{Mg} \mathrm{m}^{3}$	1.496
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{mm}^{-1}$	2.013
$F(000)$	1336
Crystal size $/ \mathrm{mm}^{\circ}$	$0.44 \times 0.46 \times 0.25$
2θ range $/^{\circ}$	$5-45$
h, k, l ranges	-4 to $14,-5$ to $16,-15$ to 15
Reflections collected	4387
Independent reflections	$3875\left(R_{\text {int }}=0.0109\right)$
Goodness of fit on F^{2}	1.32
$R(F), w R\left(F^{2}\right)$	$0.0495,0.0577$
(all data)	$0.0695,0.0622$
Largest difference peak and	$0.63,-0.75$
hole $/ \mathrm{e} \AA^{3}$	
Maximum Δ / σ	0.001

give acyl derivatives, ${ }^{12}$ and only a few aryl- ${ }^{13 a-e}$ and one divinyl- ${ }^{13 f}$ carbonyl palladium complexes have been reported. Therefore, as far as we are aware, complex 4 is the second isolated non-aryl carbonyl palladium(II) complex.

When complexes 1a and 1b reacted with AgClO_{4} in acetone

Scheme 4 (i) +L ; (ii) $+\mathrm{AgClO}_{4},-\mathrm{AgBr}$, in acetone; $(i i i)+\mathrm{Ag}$ -$\mathrm{ClO}_{4},-\mathrm{AgBr},+2$ py

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for compound $\mathbf{1 b}$

$\mathrm{Pd}-\mathrm{Br}$	$2.439(1)$	$\mathrm{Pd}-\mathrm{N}$	$2.150(7)$
$\mathrm{Pd}-\mathrm{C}(1)$	$2.009(7)$	$\mathrm{Pd}-\mathrm{C}(2)$	$2.603(7)$
$\mathrm{Pd}-\mathrm{C}(3)$	$2.228(6)$	$\mathrm{Pd}-\mathrm{C}(4)$	$2.215(6)$
$\mathrm{N}-\mathrm{C}(5)$	$1.489(12)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.322(9)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.510(10)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.393(9)$
$\mathrm{Br}-\mathrm{Pd}-\mathrm{N}$	$87.6(2)$	$\mathrm{Br}-\mathrm{Pd}-\mathrm{C}(1)$	$97.0(2)$
$\mathrm{N}-\mathrm{Pd}-\mathrm{C}(1)$	$175.3(3)$	$\mathrm{Br}-\mathrm{Pd}-\mathrm{C}(2)$	$125.3(1)$
$\mathrm{N}-\mathrm{Pd}-\mathrm{C}(2)$	$145.5(2)$	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(2)$	$29.9(1)$
$\mathrm{Br}-\mathrm{Pd}-\mathrm{C}(3)$	$156.6(2)$	$\mathrm{N}-\mathrm{Pd}-\mathrm{C}(3)$	$110.1(2)$
$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(3)$	$65.3(3)$	$\mathrm{C}(2)-\mathrm{Pd}-\mathrm{C}(3)$	$35.4(2)$
$\mathrm{Br}-\mathrm{Pd}-\mathrm{C}(4)$	$165.1(2)$	$\mathrm{N}-\mathrm{Pd}-\mathrm{C}(4)$	$88.4(2)$
$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(4)$	$87.3(3)$	$\mathrm{C}(2)-\mathrm{Pd}-\mathrm{C}(4)$	$62.4(2)$
$\mathrm{C}(3)-\mathrm{Pd}-\mathrm{C}(4)$	$36.5(2)$		

Table 2 Atomic coordinates $\left(\times 10^{4}\right)$ for compound $1 b$

Atom	x	y	z	Atom	x	y	z
Pd	329(1)	3 299(1)	$9403(1)$	C(26)	244(5)	$1137(5)$	$6855(5)$
Br	$1445(1)$	$3808(1)$	$10700(1)$	C(31)	-985(5)	$1690(5)$	$8767(5)$
N	-823(5)	$4051(4)$	$10005(4)$	C(32)	-674(7)	$1232(5)$	$9558(7)$
C(1)	$1321(5)$	$2558(4)$	8765 (5)	C(33)	$-1246(11)$	586(6)	$9911(9)$
C(2)	722(5)	$2064(4)$	$8229(5)$	C(34)	-2 134(12)	369(7)	$9477(12)$
C(3)	-333(5)	$2355(4)$	$8363(4)$	C(35)	$-2450(8)$	794(7)	8 699(11)
C(4)	-632(5)	$3181(5)$	$8088(5)$	C(36)	$-1884(6)$	$1458(6)$	$6317(7)$
C(5)	-1891(7)	$3803(6)$	$9905(6)$	C(41)	-68(5)	3771 (4)	7460 (5)
$C(6)$	$-2113(9)$	3043 (7)	$10485(7)$	C(42)	507(5)	3479 (5)	6730 (5)
C(11)	$2411(5)$	$2570(4)$	8826 (5)	C(43)	$941(6)$	4046 (6)	$6121(6)$
C(12)	$2962(7)$	$2355(6)$	$9637(6)$	C(44)	800(6)	$4918(7)$	6 234(7)
C(13)	$3975(8)$	2315 (7)	9649 (8)	C(45)	256(6)	5 224(5)	$6960(7)$
C(14)	4475 (7)	$2485(6)$	8 864(9)	C(46)	$-184(5)$	$4658(5)$	$7571(6)$
C(15)	3 944(7)	$2723(5)$	$8033(7)$	C(51)	$-1713(5)$	3 449(4)	$8113(5)$
C(16)	$2919(6)$	2760 (5)	$8032(6)$	C(52)	-2 203(6)	$3412(5)$	7 229(6)
C(21)	914(5)	$1331(4)$	7 596(5)	C(53)	-3179(6)	$3624(6)$	$7063(7)$
$\mathrm{C}(22)$	$1746(6)$	806(5)	$7719(5)$	C(54)	-3 694(7)	$3903(6)$	$7811(8)$
C(23)	$1914(7)$	135(5)	7 102(6)	C(55)	-3 250(6)	3 953(6)	8 689(7)
C(24)	$1240(7)$	-27(5)	$6352(6)$	C(56)	-2 259(6)	$3707(5)$	8869 (6)
C(25)	405(6)	472(5)	$6235(6)$				

AgBr was precipitated and from the resulting solution complexes $\quad\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\}\right.$ (solv) $] \mathrm{ClO}_{4}\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right.$, solv $=\mathrm{H}_{2} \mathrm{O} 5 \mathrm{5} ; \mathrm{R}=\mathrm{Ph}$, solv $=$ $\mathrm{Me}_{2} \mathrm{CO} \mathrm{5b}$) were isolated. The IR spectra of both compounds showed bands characteristic of co-ordinated $\mathrm{H}_{2} \mathrm{O}[v(\mathrm{OH}) 3480 \mathrm{~s}$ (vbr) cm^{-1}] or acetone $\left[\mathrm{v}(\mathrm{CO}) 1656 \mathrm{~s} \mathrm{~cm}^{-1}\right]$, respectively. The strong band around $1100 \mathrm{~cm}^{-1}$ corresponding to $v(\mathrm{ClO})$ of the $\mathrm{ClO}_{4}{ }^{-}$anion is split indicating interaction with co-ordinated $\mathrm{H}_{2} \mathrm{O}$ or/and with the NH_{2} group through hydrogen bonding. We have reported the crystal structure of the complex $\left[\mathrm{Pd}\left\{\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3}-2,4,6\right\}(\right.$ tht $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{ClO}_{4} \quad$ (tht $=$ tetrahydrothiophene) showing that each anion bridges, through hydrogen bonding, two cations and vice versa giving a catena structure. ${ }^{14}$

All complexes show two or three bands corresponding to $v(\mathrm{NH})$ in the region of $3320-3100 \mathrm{~cm}^{-1}$.

The complex $\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{N}-\right.\right.$ $\left.\left.\mathrm{H}_{2}\right\}(\mathrm{py})_{2}\right] \mathrm{ClO}_{4} 6\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$ can be prepared by reaction of $\mathbf{1 b}, \mathrm{AgClO}_{4}$ and pyridine in excess. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed two different types of pyridine resonances. Some are normal while the others are broad. Apparently one of the ligands can be displaced by the olefinic bond in a rapid equilibrium.

Experimental

General Data.-The IR spectra, C, H and N analyses, conductance measurements and melting-point determinations were carried out as described elsewhere. ${ }^{1}$ Unless otherwise stated, NMR spectra were recorded in CDCl_{3} on a Varian Unity 300 spectrometer and conductivity measurements were carried out in acetone. Chemical shifts are referred to SiMe_{4} or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$. The complexes $\left[\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right](\mu-\mathrm{Br})\right\}_{2}\right]$ and $\left[\mathrm{PdCl}_{2}\left\{\mathrm{NH}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{Ph}\right\}_{2}\right]$ were prepared as previously described.

Compound B.-The complex $\left[\mathrm{PdCl}_{2}\left\{\mathrm{NH}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{Ph}\right\}_{2}\right]$ ($500 \mathrm{mg}, 1.19 \mathrm{mmol}$) was taken up in acetone ($30 \mathrm{~cm}^{3}$), treated with solid $\mathrm{AgClO}_{4}(500 \mathrm{mg}, 2.41 \mathrm{mmol}$) and stirred for 10 min . The resulting silver chloride was filtered off and the filtrate made up to a larger volume ($100 \mathrm{~cm}^{3}$) with acetone and stirred overnight at room temperature. Acetone was removed and the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and filtered through a plug of MgSO_{4}. Solid $\mathrm{PhC} \equiv \mathrm{CPh}(1062 \mathrm{mg}, 5.958 \mathrm{mmol})$ was added and the resulting solution was stirred for 18 h . The resulting green solution was filtered through a plug of MgSO_{4}, solvent removed and acetone ($30 \mathrm{~cm}^{3}$) added. A deep green solid, insoluble in acetone, was collected, washed with acetone ($2 \times 20 \mathrm{~cm}^{3}$), and air dried ($292 \mathrm{mg}, 0.228 \mathrm{mmol}, 38 \%$). Data for this compound match those previously reported. ${ }^{10}$
$\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\} \mathrm{Br}\right]$ 1a $(\mathrm{R}=$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right)$--To a suspension of $\left[\left\{\mathrm{Pd}_{2}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right](\mu-\right.\right.$ $\mathrm{Br})\}_{2}$] $(439 \mathrm{mg}, 0.716 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ was added $\mathrm{MeO}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{Me}\left(0.3 \times 10^{-3} \mathrm{~cm}^{3}, 2.45 \mathrm{mmol}\right)$. The yellow solution initially formed was stirred for 12 h . Complex 1a precipitated from the reaction mixture as a pale yellow powder which was collected, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 20 \mathrm{~cm}^{3}\right)$, and air dried ($737 \mathrm{mg}, 1.25 \mathrm{mmol}, 87 \%$), m.p. $205^{\circ} \mathrm{C}$ (decomp.) (Found: C, $40.50 ; \mathrm{H}, 2.30 ; \mathrm{N}, 3.75$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrNO}_{8} \mathrm{Pd}$: C, $40.65 ; \mathrm{H}, 2.35 ; \mathrm{N}, 3.75 \%$). IR (cm^{-1}) v(NH) 3290s, 3203 s and 3132 s ; $\mathrm{v}(\mathrm{CO}) 1723 \mathrm{vs}, 1708 \mathrm{vs}$, 1703 vs and 1671 vs .
$\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\} \mathrm{Br}\right] \mathbf{1 b}(\mathrm{R}=$ $\mathrm{Ph})$.-To a suspension of $\left[\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right](\mu-\mathrm{Br})\right\}_{2}\right]$ ($180 \mathrm{mg}, 0.294 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added $\mathrm{PhC} \equiv \mathrm{CPh}$ ($350 \mathrm{mg}, 1.96 \mathrm{mmol}$). After 12 h a yellow solution was formed which was filtered through a plug of MgSO_{4}. Solvent was removed until ca. $2 \mathrm{~cm}^{3}$ remained and diethyl ether $\left(25 \mathrm{~cm}^{3}\right)$ was added to precipitate complex $\mathbf{1 b}$ as a bright yellow solid, which was collected, washed with diethyl ether ($2 \times 20 \mathrm{~cm}^{3}$) and air dried ($292 \mathrm{mg}, 0.440 \mathrm{mmol}, 75 \%$), m.p. $217^{\circ} \mathrm{C}$
(decomp.) (Found: C, 65.55; H, 4.65; N, 2.15. Calc. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{BrNPd}$: C, $65.20 ; \mathrm{H}, 4.55 ; \mathrm{N}, 2.10 \%$). $\Lambda_{\mathrm{M}}=0 \Omega^{-1} \mathrm{~cm}^{2}$ mol^{-1}. IR (KBr, cm^{-1}) v(NH) 3292w, 3215w and 3137w. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.65\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{Me},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right), 2.79-3.06(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NH}), 4.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$ and $6.80-7.57\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$.

Structure Determination of Complex 1b.-A yellow prism was mounted on a glass fibre and transferred to the diffractometer (Siemens R3mV). Data were collected with graphite-monochromated Mo-K α radiation ($\lambda=0.71073 \AA$) to $2 \theta_{\text {max }}=45^{\circ}$ and corrected for Lorentz and polarization effects and for absorption using a semiempirical ψ-scan method. The structure was solved by direct methods, and refined by full-matrix leastsquares analysis on F. Hydrogen atoms were included using a riding model. In the final cycles of refinements a weighting scheme of the form $w^{-1}=\sigma^{2}(F)+0.0010 F^{2}$ was used. Refinement continued until convergence was reached. The structure was solved and refined using the SHELXTL PLUS software package. ${ }^{15}$ Final atomic coordinates for complex 1b are listed in Table 2.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.
$\left[\mathrm{Pd}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\left[\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}\left(\mathrm{CO}_{2}-\right.\right.\right.\right.$ $\left.\left.\left.\mathrm{Me})=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right] \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\} \mathrm{Br}\right]$ 2.--To a suspension of complex $1 \mathbf{1 a}(60 \mathrm{mg}, 0.102 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{MeO}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{Me}\left(0.05 \mathrm{~cm}^{3}, 0.408 \mathrm{mmol}\right)$ and the resulting suspension was refluxed for 2 h . A yellow solution was formed which was filtered through a plug of MgSO_{4}. Solvent was removed until ca. $2 \mathrm{~cm}^{3}$ remained and diethyl ether was added $\left(25 \mathrm{~cm}^{3}\right)$ to precipitate complex 2 as a yellow solid, which was collected, washed with diethyl ether, and air dried (42.2 mg , $0.057 \mathrm{mmol}, 56 \%$), m.p. $160^{\circ} \mathrm{C}$ (decomp.) (Found: C, $42.30 ; \mathrm{H}$, 4.05; $\mathrm{N}, 2.20$. Calc. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{BrNO}_{12}$ Pd: C, $42.60 ; \mathrm{H}, 4.60 ; \mathrm{N}$, 1.90%). $\Lambda_{M}=0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) $v(\mathrm{NH}) 3289 \mathrm{w}$ and 3239 w . ${ }^{1} \mathrm{H}$ NMR: $\delta 1.86\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right.$), 3.28 (m, $1 \mathrm{H}, \mathrm{NH}$ or CH), 3.72, 3.76, 3.84, 3.85, 3.90, $3.95(\mathrm{~s}, 19 \mathrm{H}, 6$ OMe ; one NH or CH resonance obscured by the OMe groups), $4.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}$ or CH$)$, and $7.03-7.33\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$.
$\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\} \mathrm{Br}(\mathrm{py})\right] \quad 3$ ($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$).-To a suspension of complex $\mathbf{1 a}$ (60 mg , 0.11 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added pyridine ($0.165 \mathrm{~cm}^{3}$, 2.04 mmol). The resulting solution was stirred for 30 min and then filtered through a plug of MgSO_{4}. Solvent was removed until $c a .2 \mathrm{~cm}^{3}$ remained and diethyl ether ($25 \mathrm{~cm}^{3}$) was added to precipitate complex 3 as a very pale yellow solid which was collected, washed with ether and air dried $(55 \mathrm{mg}, 0.082 \mathrm{mmol}$, 77%), m.p. $192-193^{\circ} \mathrm{C}$ (decomp.) (Found: C, $45.00 ; \mathrm{H}, 4.05$; N, 4.25. Calc. for $\left.\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{8} \mathrm{Pd}: \mathrm{C}, 44.85 ; \mathrm{H}, 4.05 ; \mathrm{N}, 4.20 \%\right)$. $\Lambda_{\mathrm{M}}=0 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. IR (cm^{-1}) v(NH) $3320 \mathrm{~m}, 3300 \mathrm{~m}$ and $3240 \mathrm{~m} ; \mathrm{v}(\mathrm{CO}) 1725 \mathrm{vs}$ and 1700 vs . NMR: ${ }^{1} \mathrm{H}, \delta 1.67$ (d, 3 H , $\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.7 \mathrm{~Hz}$), $3.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 3.14(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 3.57 (s, $4 \mathrm{H}, \mathrm{OMe}$ and NH), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.90 ($\mathrm{s}, 3 \mathrm{H}$, OMe), $5.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.09\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{3}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.24-7.48$ (m, 5H, m-H of py; H^{2-4} of $\mathrm{C}_{6} \mathrm{H}_{4}$), $7.76(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{H}$ of py$)$ and $8.87\left(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H}\right.$ of py); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 22.9\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 51.8(\mathrm{~s}$, OMe), 52.0 (s, OMe), 52.1 (s, OMe), 52.9 (s , OMe), 53.3 (s, CHCH_{3}), 124.6 (s, m - C of py), 125.7 ($\mathrm{s}, \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}$), 127.6 (s , $\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}$), 127.8 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 128.6 ($\mathrm{s}, \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}$), 130.2 (s, CH, $\mathrm{C}_{6} \mathrm{H}_{4}$), 133.3 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 135.1 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 137.9 ($\mathrm{s}, p-\mathrm{C}$ of py), 138.5 (s, C, $\mathrm{C}_{6} \mathrm{H}_{4}$), 145.1 ($\mathrm{s}, \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4}$), 154.2 ($\mathrm{s}, m-\mathrm{C}$ of py), 159.9 (s , $\mathrm{C}, \mathrm{C}=\mathrm{C}), 164.7(\mathrm{~s}, \mathrm{CO}), 165.1(\mathrm{~s}, \mathrm{CO}), 167.8(\mathrm{~s}, \mathrm{CO})$ and 171.5 (s, CO).
$\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\} \mathrm{Br}(\mathrm{CO})\right] \quad 4$ ($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$).-Carbon monoxide was bubbled through a suspension of complex $1 \mathrm{a}\left(100 \mathrm{mg}, 0.169 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 cm^{3}) until it became a colourless solution which was stirred
under an atmosphere of CO for 30 min , and then filtered through a plug of MgSO_{4}. Solvent was removed until ca. $2 \mathrm{~cm}^{3}$ remained and diethyl ether was added $\left(25 \mathrm{~cm}^{3}\right)$ to precipitate complex 4 as a white solid which was collected, washed with diethyl ether, and air dried ($70 \mathrm{mg}, 0.11 \mathrm{mmol}, 67 \%$), m.p. $186{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 40.75; H, 3.55; N, 2.25. Calc. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrNO}_{9} \mathrm{Pd}: \mathrm{C}, 40.75 ; \mathrm{H}, 3.60 ; \mathrm{N}, 2.25 \%$). $\Lambda_{\mathrm{M}}=0 \Omega^{-1}$ $\mathrm{cm}^{2} \mathrm{~mol}^{1}$. IR $\left(\mathrm{cm}^{-1}\right) \mathrm{v}(\mathrm{NH}) 3295 \mathrm{~s}$ and $3243 \mathrm{~s} ; \mathrm{v}(\mathrm{CO}) 2120 \mathrm{~s}$. NMR: ${ }^{1} \mathrm{H}, \delta 1.67\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right), 3.25(\mathrm{~m}, 1 \mathrm{H}$, NH), 3.65 ($\mathrm{s}, 4 \mathrm{H}$, OMe and NH), 3.73 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.86 ($\mathrm{s}, 3$ $\mathrm{H}, \mathrm{OMe}), 3.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$ and $7.13-7.52$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 23.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 52.2(\mathrm{~s}, \mathrm{OMe}), 52.4$ (s, OMe), 52.5 (s, OMe), 52.9 (s, OMe), $53.1\left(\mathrm{~s}, \mathrm{CHCH}_{3}\right), 125.5$ (s, CH, C $\mathrm{C}_{6} \mathrm{H}_{4}$), 128.0 ($\mathrm{s}, \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}$), 129.0 ($\mathrm{s}, \mathrm{C}, \mathrm{C}=\mathrm{C}$), 129.2 (s , $\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}$), 130.6 ($\mathrm{s}, \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}$), 133.2 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 134.4 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 137.8 (s, C, C ${ }_{6} \mathrm{H}_{4}$), 144.8 ($\mathrm{s}, \mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{4}$), 155.5 (s, PdCO), 160.6 ($\mathrm{s}, \mathrm{C}, \mathrm{C}=\mathrm{C}$), $164.3\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 167.0\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 169.9$ (s , $\mathrm{CO}_{2} \mathrm{CH}_{3}$) and $170.9\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$.
$\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\}\left(\mathrm{OH}_{2}\right)\right]-$ $\mathrm{ClO}_{4} \mathbf{5 a}\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$.-To a suspension of complex $\mathbf{1 a}$ $(400 \mathrm{mg}, 0.677 \mathrm{mmol})$ in acetone $\left(30 \mathrm{~cm}^{3}\right)$ was added solid AgClO_{4} ($145 \mathrm{mg}, 0.699 \mathrm{mmol}$). The resulting suspension was stirred for 2 h , and then filtered through a plug of MgSO_{4}. Solvent was removed until $c a .2 \mathrm{~cm}^{3}$ remained and diethyl ether was added ($25 \mathrm{~cm}^{3}$) to precipitate complex 5 a as a yellow solid which was collected, washed with diethyl ether, and air dried ($361 \mathrm{mg}, 0.575 \mathrm{mmol}, 87 \%$), decomposes $169^{\circ} \mathrm{C}$ (Found: C, 38.30; $\mathrm{H}, 3.85 ; \mathrm{N}, 2.65$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClNO}_{13} \mathrm{Pd}: \mathrm{C}, 38.25$; $\mathrm{H}, 3.55 ; \mathrm{N}, 2.25 \%) . \Lambda_{\mathrm{M}}=106 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. IR $\left(\mathrm{cm}^{-1}\right) \mathrm{v}(\mathrm{NH})$ $3280 \mathrm{~s}, 3210 \mathrm{~s}$ and $3130 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR: $\delta 1.59\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{HH}}=\right.$ 7.2), 3.51 (m, 1 H, NH), $3.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.60(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 3.81 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $4.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 5.12$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 7.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4},{ }^{3} J_{\mathrm{HH}}=7.8\right), 7.35(\mathrm{t}$, $\left.1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.44\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $7.68\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}\right.$, $\mathrm{C}_{6} \mathrm{H}_{4},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}$).
$\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{Ph})=\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph})=\mathrm{C}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\}(\mathrm{OC}-\right.$
$\left.\left.\mathrm{Me}_{2}\right)\right] \mathrm{ClO}_{4} \mathbf{5 b}$.-To a suspension of complex $\mathbf{1 b}(150 \mathrm{mg}, 0.226$ mmol) in acetone ($30 \mathrm{~cm}^{3}$) was added solid $\mathrm{AgClO}_{4}(47.0 \mathrm{mg}$, 0.227 mmol). The resulting suspension was stirred for 2 h , and then filtered through a plug of MgSO_{4}. Solvent was removed until ca. $2 \mathrm{~cm}^{3}$ remained and diethyl ether was added ($25 \mathrm{~cm}^{3}$) to precipitate complex 5b as a bright yellow solid, which was collected, washed with diethyl ether, and air dried $(86.8 \mathrm{mg}$, $0.117 \mathrm{mmol}, 52 \%$), decomposes $162{ }^{\circ} \mathrm{C}$ (Found: C, $63.10 ; \mathrm{H}$, 4.95; N, 2.20. Calc. for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{ClNO}_{5} \mathrm{Pd}: \mathrm{C}, 63.25 ; \mathrm{H}, 4.90$; N, 1.90%). $\Lambda_{\mathrm{M}}=107 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. IR (cm^{-1}) $\mathrm{v}(\mathrm{NH}) 3277 \mathrm{~m}$, 3244 m and $3159 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.68\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9\right.$ Hz), 2.13 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), $3.20-3.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}), 4.39(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH})$ and $6.66-7.66\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$.
$\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\}(\mathrm{py})_{2}\right] \mathrm{ClO}_{4}$ $6\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$.-To a suspension of complex 1 a (100 mg , 0.169 mmol) in acetone ($30 \mathrm{~cm}^{3}$) was added solid AgClO_{4} (36.0 $\mathrm{mg}, 0.169 \mathrm{mmol}$). The resulting suspension was stirred for 2 h , and then filtered through a plug of MgSO_{4}. Pyridine $(0.165$ $\mathrm{cm}^{3}, 2.04 \mathrm{mmol}$) was added and the resulting colourless solution was stirred for 30 min . Solvent was removed until ca. 2 cm^{3} remained and diethyl ether was added $\left(25 \mathrm{~cm}^{3}\right)$ to precipitate complex 6 as a white solid, which was collected, washed with diethyl ether, and air dried ($110 \mathrm{mg}, 0.143 \mathrm{mmol}$, 85%), m.p. $135-137^{\circ} \mathrm{C}$ (Found: C, $46.60 ; \mathrm{H}, 4.30 ; \mathrm{N}, 5.25$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{ClN}_{3} \mathrm{O}_{12} \mathrm{Pd}: \mathrm{C}, 46.90 ; \mathrm{H}, 4.20 ; \mathrm{N}, 5.45 \%$). $\Lambda_{\mathrm{M}}=111$ $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. IR (KBr, cm^{-1}) v(NH) 3238w and 3150w. ${ }^{1} \mathrm{H}$ NMR [($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]: \delta 1.38\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{HH}}=6.9\right), 3.22(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}), 3.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 3.53(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.70(\mathrm{~s}, 3 \mathrm{H}$, OMe), 3.95 (s, $3 \mathrm{H}, \mathrm{OMe}$), 4.58 (m, $1 \mathrm{H}, \mathrm{NH}$), 5.27 (m, 1 H ,

CH), $7.14\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{3}\right.$ of $\mathrm{C}_{6} \mathrm{H}_{4},{ }^{3} J_{\mathrm{HH}}=7.5,{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}$), $7.37\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}^{4}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.46\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}^{5}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.56$ (apparent $\mathrm{t}, 2 \mathrm{H}, m-\mathrm{H}$ of py), $7.62\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6}\right.$ of $\mathrm{C}_{6} \mathrm{H}_{4}$), 7.76 ($\mathrm{m}, 2 \mathrm{H}, m$-H of py), 8.01 (apparent $\mathrm{t}, 1 \mathrm{H}, p-\mathrm{H}$ of py), 8.12 ($\mathrm{m}, 1 \mathrm{H}, p-\mathrm{H}$ of py), 8.54 (apparent $\mathrm{d}, 2 \mathrm{H}, o-\mathrm{H}$ of py), and 8.93 ($\mathrm{m}, 2 \mathbf{H}, o-\mathrm{H}$ of py).

Acknowledgements

We are grateful to Dirección General de Investigación Científica y Técnica (PB92-0982-C) for financial support. We thank the University of Cambridge for data collection facilities. M. C. R. de A. thanks the European Community for a bursary.

References

1 Part 1, J. Vicente, I. Saura-Llamas and P. G. Jones, J. Chem. Soc., Dalton Trans., 1993, 3619.
2 See, for example, J. M. Thompson and R. F. Heck, J. Org. Chem., 1975, 40, 2667.
3 See, for example, A. D. Ryabov, I. K. Sakodinskaya, S. N. Dvoryantsev, A. V. Eliseev and A. K. Yatsimirsky, Tetrahedron Lett., 1986, 27, 2169; B. J. Brisdon, P. Nair and S. F. Dyke, Tetrahedron, 1981, 37, 173; A. D. Ryabov, I. K. Sakodinskaya and A. K. Yatsimirsky, J. Organomet. Chem., 1991, 406, 309

4 R. D. O'Sullivan and A. W. Parkins, J. Chem. Soc., Chem. Commun., 1984, 1165
5 M. Pfeffer, Recl. Trav. Chim. Pays-Bas, 1990, 109, 567 and refs. therein.
6 (a) J. Dupont, M. Pfeffer, L. Theurel and M. A. Rotteveel, New J. Chem., 1991, 15, 551; (b) F. Maassarani, M. Pfeffer and G. Le Borgne, Organometallics, 1990, 9, 3003; (c) J.-P. Sutter, M. Pfeffer, A. De Cian and J. Fischer, Organometallics, 1992, 11, 386; (d) M. Pfeffer, M. A. Rotteveel, G. Le Borgne and J. Fischer, J. Org. Chem., 1992, 57, 2147; (e) M. Pfeffer, J.-P. Sutter, A. De Cian and J. Fischer, Organometallics, 1993, 12, 1167; (f) M. Pfeffer, J.-P. Sutter, M. A. Rotteveel, A. De Cian and J. Fischer, Tetrahedron, 1992, 48, 2427; (g) A. D. Ryabov, R. van Eldick, G. Le Borgne and M. Pfeffer, Organometallics, 1993, 12, 1386; (h) N. Beydoun, M. Pfeffer, A. DeCian and J. Fischer, Organometallics, 1991, 10, 3693.

7 C. López, X. Solans and D. Tramuns, J.Organomet. Chem., 1994, 471, 265 and refs. therein.
8 R. F. Heck, Palladium Reagents in Organic Syntheses, Academic Press, New York, 1987; A. D. Ryaboy, Synthesis, 1985, 233 and refs. therein.
9 F. Maassarani, M. Pfeffer, J. Spencer and E. Wehman, J. Organomet. Chem., 1994, 466, 265 and refs. therein.
10 T. R. Jack, C. J. May and J. Powell, J. Am. Chem. Soc., 1977, 99, 4707
11 J. Dupont, M. Pfeffer, J. C. Daran and J. Gauteron, J. Chem. Soc., Dalton Trans., 1988, 2421; F. Maassarani, M. Pfeffer and G. Le Borgne, Organometallics, 1987, 6, 2043.

12 See, for example, G. P. C. M. Dekker, A. Buijs, C. J. Elsevier, K. Vrieze, P. W. N. M. van Leeuwen, W. J. J. Smeets, A. L. Spek, Y. F. Wang and C. H. Stam, Organometallics, 1992, 11, 1937; F. T. Ladipo and G. K. Anderson, Organometallics, 1994, 13, 303.

13 (a) P. M. Maitlis, P. Espinet and M. J. H. Russell, Comprehensive Organometallic Chemistry, Pergamon, London, 1982, vol. 6, p. 279; (b) R. Uson, J. Fornies, M. Tomas and B. Menjon, Organometallics, 1985, 4, 1912; (c) R. Uson, J. Fornies and F. Martinez, J. Organomet. Chem., 1976, 112, 105; (d) J. Vicente, A. Arcas, M. V. Borrachero, A. Tiripicchio and M. Tiripicchio-Camellini, Organometallics, 1991, 10, 3873; (e) I. Toth and C. J. Elsevier, J. Am. Chem. Soc., 1993. 115, 10388; (f) H. Ossor, M. Pfeffer, J. T. B. H. Jastrzebski and C. H. Stam, Inorg. Chem., 1978, 26, 1169

14 J. Vicente, A. Arcas, M. V. Borrachero, E. Molíns and C. Miravitlles, J. Organomet. Chem., 1992, 441, 487
15 SHELXTL PLUS, Program Version 4.0, Siemens Analytical X-Ray Instruments, Madison, WI, 1990.

Received 30th January 1995; Paper 5/00523J

[^0]: \dagger Orthometallated Primary Amines. Part $2 .{ }^{1}$
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

